INDIA-JAPAN PARTNERSHIP FOR ACHIEVING SUSTAINABLE DEVELOPMENT GOALS

Our contribution to environmental improvement in India

2019.03.15
contents

1. Business profile
2. Current state of municipal solid waste disposal in India
3. Our contribution to environmental improvement in India
4. Conclusion
1. Business profile
Company Profile Overview

Hitachi Zosen Corporation
- Date of Founding: April 1, 1881
 by E. H. Hunter from UK
- Capital: 45,442 ¥ million (≒413 million USD)
- Net Sales: 376,437 ¥ million (≒3,422 million USD, fy2017)
- Employees: 10,377 (fy2017)
- Business Segments: Environmental Systems & Industrial Plants, Machinery, Infrastructure

fy2017 Net sales composition
- Environmental Systems and Industrial Plants: 62%
- Machinery: 27%
- Infrastructure: 7%
- Others: 4%
Our activity in India

ISGEC Hitachi Zosen Ltd. (Dahej)
Joint Venture with ISGEC Heavy Engineering Ltd for manufacturing & Sales of Process Equipment

Osmoflo Engineering Service Pvt. Ltd (Pune)
Plant design service of Desalination plants

Bangalore Metro UG-2 Project
φ6.44m Slurry-type Tunnel Boring machine x 2units

Hitachi Zosen India Pvt. Ltd. (Gurgaon)
Head Office of Hitachi Zosen Corp. Indian Business

Jabalpur WtE Project
Client: Essel Infraprojects Ltd.
Ultimate Client: Jabalpur MC
Capacity: 600t/d x 1line
Power output: 11.5MW
Start-up: May 2016

Hitachi Zosen India Pvt. Ltd. Hyderabad Branch
Centre of Energy from Waste Facilities supply business in Indian and Sub Continent Market

© 2019 Hitachi Zosen Corporation
Our references - WtE -

(as of Mar 31, 2018)

911

Europe 213
Asia 612
North America 79
Africa 3
Oceania 3
South America 1

Market Shares in 2008 - 2016

© 2019 Hitachi Zosen Corporation
Our contribution to SDGs
2. Current state of municipal solid waste disposal in India
Current state of municipal solid waste disposal in India

- Municipal solid waste
 - The ratio of food waste is high and the water content is high.
 - There is a high proportion of incombustible materials such as stone and sand.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Unit</th>
<th>India</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation amount</td>
<td>tons/day</td>
<td>≅ 115,000</td>
<td>≅ 118,000</td>
</tr>
<tr>
<td>Collection rate</td>
<td>%</td>
<td>69</td>
<td>100</td>
</tr>
<tr>
<td>Per capita generation of waste</td>
<td>g per capita/day</td>
<td>200-600</td>
<td>925</td>
</tr>
</tbody>
</table>

- Separate collection
 - Separate collection is carried out, but it is simple.
 - Usable paper and glass bottles that can be sold are sold by each household and collector.
Intermediate treatment (as of fy2014)
- The ratio of intermediate treatment is lower in India than in Japan.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Unit</th>
<th>India</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate treatment ratio</td>
<td>%</td>
<td>18</td>
<td>89</td>
</tr>
</tbody>
</table>

- Most of the technologies adopted in India are composting and methane fermentation.
- More than 80% in Japan is WtE technology.

<table>
<thead>
<tr>
<th>Technology</th>
<th>No. of facility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Composting</td>
<td>279</td>
</tr>
<tr>
<td>Methane fermentation</td>
<td>172</td>
</tr>
<tr>
<td>RDF manufacture</td>
<td>29</td>
</tr>
<tr>
<td>Waste to Energy plant</td>
<td>8¹)</td>
</tr>
</tbody>
</table>

Note 1: 4 facilities during operation
Necessity of hygienic waste disposal

Environmental issues by inappropriate disposal

☐ Current situation
 - Directly landfill or illegally disposed
 - Shortage of landfill site

☐ Environmental Impacts
 - Generation of GHG (CH₄ etc.)
 - Shortage of disposal site
 - Disease caused by ground collapse
 - Fire by spontaneous fire
 - Pollution of environment (Offensive odor, Leachate)
 - Pest Infectious disease
 - Landfill Site
Necessity of hygienic waste disposal

To reduce the environmental impacts

- Sanitary waste treatment
 - Prevention of disease and pest
 - Prevention of environmental pollution

- Heat utilization & power generation from waste
 - Reduction of greenhouse gas emission

It is most important to adopt the proven technology that has a stable driving experience over many years.
Advantages of WtE

Waste-to-Energy
- Proven and reliable technology with energy recovery system
- Sanitary method in whole process including flue gas treatment
- Reduce 70-85% weight & 90-95% volume of waste to extend landfill lifetime
- 1-ton waste can generate 400-800 kWh electricity

Waste (Municipal, Industrial) → WtE plant → Electricity / Steam
Ash: 5-10% of original volume → Final Disposal Site
3. Our contribution to environmental improvement in India
Grate system is most economical and popular technology in the world.

Analysis of 692 units, commissioned between 2006 – 2015

Source: ecoprog
Our references - Jabalpur, India -

Consortium of Hitachi Zosen India Private Limited and ISGEC Heavy Engineering Ltd. conduct EPC work for the project.

- 1st Waste to Energy plant engineered by Japanese company to suit local waste handling.
- HZIND’s Scope of Work is main equipment supply, basic & detail design and SV services.
- This facility completed two years of stable operation.

Client Essel Infraprojects Ltd.

Start-up 2016

Technology

- Furnace Grate furnace (air-cooled)
- Energy recovery boiler
- Flue gas treatment Gas cooler, bag filter

Technical Data

- **Fuel** MSW
- **Waste capacity** 600t/d (600t/d x 1)
- **Generator capacity** 11.5MW
Our contribution to CO₂ reduction

The waste sector in India has emitted **57.73 million tons of CO₂ eq.** in 2007.

The incineration of waste and generating electricity can contribute to the suppression of GHG emissions from landfill and thermal power plants.

![Graph showing GHG emissions by sector in 2007](image)

Contribution to CO₂ reduction in Jabalpur WtE plant

<table>
<thead>
<tr>
<th>Activity</th>
<th>GHG Reduction</th>
<th>Ratio for Waste Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration</td>
<td>104,214 tons CO₂ eq./year</td>
<td>0.2%</td>
</tr>
<tr>
<td>Generating electricity</td>
<td>34,155 tons CO₂ eq./year</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Source: Clean Air Management Profile, 2010 Edition
Our contribution to stable operation

Tools for realizing stable operation

- Management of waste bunker - visualization –
- CCS using AI technology
- Predictive maintenance
- Remote monitoring system

Substitution of power plant

Suppression of harmful gas emission

Waste bunker visualization
4. Conclusion
Conclusion

- It is important to reduce the environmental impacts of “Open dumping”.

- It need to adopt the technology to produce the energy, while processing waste.

- Our company has already contributed to environmental conservation in India.
Technology for People, the Earth, and the Future

Hitachi Zosen creates links between mother nature and our future