De-carbonization of Indian Railways:
Project plan (Phase I)

Saon Ray and Kuntala Bandyopadhyay

June 2016
Contents

1. Introduction .. 1

2. Objective and scope of the study ... 2

3. Literature review .. 3
 a) Estimation of freight and passenger demand ... 3
 b) Demand for freight and passenger in India ... 6
 c) Estimates of electricity consumption by Indian Railways .. 8

4. Passenger and freight transport demand of Indian Railways up to 2031-32 14
 4.1 Estimation of passenger and freight demand ... 10
 a) Passenger demand ... 10
 b) Freight demand ... 11
 4.2 Passenger and freight transport demand of Indian Railways up to 2031-32 14
 4.2.1 Passenger transport demand of Indian Railways up to 2031-32 14
 4.2.1.1 Elasticity of Rail passenger demand between 2014-15 and 2019-20 16
 4.2.1.2 Elasticity of Rail passenger demand between 2020-21 and 2030-31 17
 4.2.1.3 Share of Suburban rail passenger transport in total rail passenger transport 18
 4.2.2 Rail freight transport demand up to 2031-32 ... 19
 4.2.3 Share of Suburban rail freight transport in total rail freight transport 20
 4.2.4 Share of suburban coaches ... 21
 4.2.5 Share of general and hauling one TKM of freight transport 22

3. Some prerequisite calculations for estimating future energy requirement for passenger and freight transport ... 33
 5.1.1 In-vehicle electricity consumption per PKM of non-suburban coaches 35
 5.1.2 In-vehicle electrical energy consumption of passenger carriages in suburban transport 37
 5.1.3 Total electrical energy consumed for in-vehicle purpose ... 38
 5.2 Second step: electricity energy consumed for only hauling one GTKM of rail transport in general and hauling one TKM of freight transport ... 39
 5.3 Third step: Calculation of electrical energy consumed only for the hauling part of non-suburban passenger transport ... 40
 5.4 Fourth step: Calculation of electrical energy consumed only for the hauling part of suburban passenger transport ... 42
6. Expected future trends and assumptions made therein on electrical energy consumption

6.1 Future trends of electrical energy consumption in non-suburban passenger transport

6.2 Future trends of electrical energy consumption in suburban passenger transport

6.3 Future trends of electrical energy consumption in suburban passenger transport

6.4 Future trends of electrical energy consumption in freight transport

6.5 Summary of CAGR of energy consumption per unit of traffic between 2015-16 and 2030-31.

7. Rail passenger transport demand and electrical energy requirement upto 2030-31

7.1 Rail passenger transport growth between 2003-04 and 2014-15

7.2.1 Assumptions for the demand of various classes of rail passenger transport between 2015-6 and 2030-31

7.2.2 Electrical energy required per PKM in passenger transport between 2015-16 and 2030-31

7.2.3 Rail passenger transport demand and energy requirement between 2015-16 and 2030-31 for optimistic scenario

7.2.4 Rail passenger transport demand and energy requirement between 2015-16 and 2030-31 for realistic scenario

7.2.5 Rail passenger transport demand and energy requirement between 2015-16 and 2030-31 for pessimistic scenario

7.3 Rail freight transport demand and electrical energy requirement up to 2030-31

7.3.1 Rail freight transport growth between 2003-04 and 2014-15

7.3.2 Assumptions for the demand of various classes of rail freight transport between 2015-6 and 2030-31

7.3.3 Rail freight transport demand and energy requirement between 2015-16 and 2030-31 for optimistic scenario

7.3.4 Rail freight transport demand and energy requirement between 2015-16 and 2030-31 for realistic scenario

7.3.5 Rail freight transport demand and energy requirement between 2015-16 and 2030-31 for pessimistic scenario

8. Overall electrical energy requirement of rail transport up to 2030-31

9. Emission profile from electric energy utilization of Indian Railways

9.1 Energy Forecasting Framework and Emissions Consensus Tool

9.2 The basic assumptions for EFFECT model

9.3 Parameters for passenger service of EFFECT model

9.4 Parameters for freight service of EFFECT model

9.5 Results of EFFECT model on emission profile of passenger and freight transport

10. Comparison with China

a) Why is it necessary for India to reduce the energy consumed by transport?
Tables

Table 1: Factors affecting demand for railway services .. 3
Table 2: Estimates of passenger and freight demand 2011-12 to 2031-32 7
Table 3: Results from OLS regression ... 10
Table 4: Results from OLS regression ... 11
Table 5: Results from VAR of passenger demand ... 13
Table 6: Results from VAR analysis for Freight demand ... 13
Table 7: Rail Passenger transport demand as forecast by NTDPC up to 2031-32 14
Table 8: Rail Passenger transport demand estimated for three different scenarios up to 2031-32 15
Table 9: Growth of suburban and non-suburban rail passenger transport 18
Table 10: Rail Passenger and Freight transport demand as forecast by NTDPC up to 2031-32 19
Table 11: Estimation of rail freight demand for three different scenarios between 2011-12 and 2031-32 .. 20
Table 12: Growth of electrification of IR tracks between 2010-11 and 2013-14 22
Table 13: Year-wise breakup of EMU/DMU in suburban services ... 23
Table 14: Establishing relationship between electrified track and electrified hauling of non-suburban passenger transport between 2000-01 and 2014-15 ... 25
Table 15: Establishing relationship between electrified track and electrified hauling of freight transport between 2000-01 and 2014-15 ... 26
Table 16: Estimation of expected addition to the electrification for non-suburban passenger transport between 2015-16 and 2030-31 ... 28
Table 17: Estimation of expected addition to the electrification for freight transport between 2015-16 and 2030-31 .. 29
Table 18: Estimation of expected electric hauling of non-suburban passenger transport between 2015-16 and 2030-31 .. 30
Table 19: Estimation of expected electric hauling of freight transport between 2015-16 and 2030-3131
Table 20: Electrical energy consumption for transport and non-transport between 2007-08 and 2014-15 ... 32
Table 21: Approximate estimation of energy consumed in passenger coaches 35
Table 22: Deriving the breakup of AC and non-AC coaches for 2010-11 36
Table 23: Estimation of average electrical energy consumed for in-vehicle use per PKM for AC and non AC coaches in 2010-11 .. 36
Table 51: Rail freight transport demand and energy requirement between 2015-16 and 2030-31 for the optimistic scenario .. 63
Table 52: Rail freight transport demand and energy requirement between 2015-16 and 2030-31 for the realistic scenario .. 64
Table 53: Rail freight transport demand and energy requirement between 2015-16 and 2030-31 for the pessimistic scenario ... 65
Table 54: Overall energy requirement of IR between 2015-16 and 2030-31 for the optimistic scenario (CAGR of 9% GDP) ... 66
Table 55: Overall energy requirement of IR between 2015-16 and 2030-31 for the realistic scenario (CAGR of 9% GDP) ... 67
Table 56: Overall energy requirement of IR between 2015-16 and 2030-31 for the pessimistic scenario (CAGR of 9% GDP) ... 68
Table 57: EFFECT model: input parameters for overall rail passenger transport 71
Table 58: EFFECT model: input parameters for non-suburban electric hauling 71
Table 59: Average annual mileage per passenger car between 2006-07 and 2014-15 for electrified non-suburban service as per IR data .. 72
Table 60: Estimation of maximum seat/berth capacity of AC classes of non-suburban trains of IR .. 73
Table 61: Estimation of maximum seat/berth capacity of non AC classes of non-suburban trains of IR .. 73
Table 62: Estimation of average number of passengers in a passenger car between 2006-07 and 2030-31 across classes of non-suburban trains 73
Table 63: Average mileage per passenger car between 2006-07 and 2014-15 74
Table 64: Estimation of average number of passenger cars per electrically hauled non-suburban train and its CAGR up to 2030-31 .. 75
Table 65: Estimation of average number of electric locomotives per train in non-suburban train service and its CAGR up to 2030-31 .. 75
Table 66: Estimation of average km/year travelled per locomotive and its CAGR up to 2030-31 76
Table 67: EFFECT model: input parameters for suburban EMUs 76
Table 68: Estimation of average loading factor of suburban EMU passenger cars and its CAGR up to 2030-31 .. 77
Table 69: Breakup of passenger cars in EMU trains in 2010-11 .. 77
Table 70: Average distance travelled by an EMU in 2010-11 .. 78
Table 71: Expected CAGR of average EMU train annual mileage 78
Table 72: EFFECT model: input parameters for non-electrified (diesel) non-suburban passenger service .. 78
Table 73: Estimation of average number of passenger cars in a diesel-hauled non-suburban train and average number of passengers in a diesel-hauled passenger car between 2006-07 and 2014-15 .. 79
Table 74: Estimation of diesel locomotives per non-suburban passenger train between 2006-07 and 2014-15 .. 80
Table 75: Estimation of average km/year travelled per diesel locomotive used for passenger transport in 2010-11 .. 80
Table 76: EFFECT model: input parameters for locomotive fleet turnover and efficiency of passenger services .. 81
Table 77: Scrappage of electric locomotives between 2010-11 and 2013-14 82
Table 78: EMU scrappage rate between 2010-11 and 2013-14 .. 82
Table 79: Scrappage of diesel locomotives between 2010-11 and 2013-1483
Table 80: EFFECT model: input parameters for energy consumption for propulsion of passenger
traffic ...83
Table 81: Electric energy consumed per passenger km in non-suburban transport for propulsion in
2010-11 ...83
Table 82: Estimation of diesel energy consumption for hauling in passenger and freight transport in
2010-11 ...84
Table 83: EFFECT model: input parameters for non-propulsion energy consumption of passenger
traffic ...84
Table 84: Non-transport energy apportioned for passenger and freight transport85
Table 85: Estimation of variable component of non-propulsion energy and the share of electricity in
non-propulsion energy between 2010-11 and 2030-31 ..86
Table 86: EFFECT model: input parameters for overall rail freight transport87
Table 87: EFFECT model: input parameters for freight hauled by electricity87
Table 88: Average wagon loading factor between 2010-11 and 2014-15 and its CAGR up to 2030-31
..89
Table 89: Average annual mileage per wagon between 2010-11 and 2014-1589
Table 90: Estimation of CAGR in the average annual mileage per wagon or locomotive between
2010-11 and 2030-31 ...89
Table 91: Number of wagons per electrically hauled freight train and its CAGR up to 2030-3190
Table 92: Number of locomotives per electric hauled freight train between 2006-07 and 2013-14 ...90
Table 93: Average km/year travelled per electric locomotive used for freight transport90
Table 94: Input parameters of diesel hauling freight for EFFECT model91
Table 95: Estimation of number of wagons per diesel hauled train and its CAGR up to 2030-3192
Table 96: Estimation diesel locomotive per freight train and its CAGR up to 2030-3192
Table 97: Estimation of average km/year travelled per diesel locomotive that were used for freight
transport ..93
Table 98: Input parameters for Locomotive Fleet Turnover & Efficiency of freight transport for
EFFECT model ..93
Table 99: Wagon scrappage rate between 2010-11 and 2013-14 ..94
Table 100: Input parameters for energy consumption for propulsion of freight traffic for EFFECT
model ..95
Table 101: Estimation of energy consumption per ton-km in base year for diesel hauled freight
transport ...95
Table 102: Input parameters for non-propulsion energy consumption of freight traffic for EFFECT
model ...95
Table 103: CO2 Equivalent emissions of passenger and freight transport between 2010-11 and 2030-
31 for optimistic scenario ...96
Table 104: CO2 Equivalent emissions of passenger and freight transport between 2010-11 and 2030-
31 for realistic scenario ...97
Table 105: CO2 Equivalent emissions of passenger and freight transport between 2010-11 and 2030-
31 for pessimistic scenario ..98
Table 106: Coal Consumption and CO2 emissions, China and India, 2001-2009 (Annual Growth
rates) ..101
Table 107: Comparison of Rail Lines (Total route-km), Railways goods transported (million ton-km)
and Railways passenger carried (million passenger-km) of China and India104
Table 108: National Electricity Production Mix Evolution 2000-2012 India.................................106

Figures

Figure 1: Trends in Real GDP (US Billion): China and India ...102
Figure 2: Trends in coal consumption: China and India ...102
Figure 3: Trends in CO₂ emissions: China and India ...103
Figure 4: Share of Railway Emission by Geographic Area, 2012 ...103
Figure 5: Railways traffic density of the major economies ...104
Figure 6: Comparison of Rail lines (total route-km) between China and India105
Figure 7: Railways, passengers carried (million passenger-km) ...105
Figure 8: Railways, goods transported (million ton-km) ...106
Figure 9: National Electricity Production Mix Evolution of India 2000-12107
Figure 10: Railway Final Energy Consumption by Fuel by China, 2000-12107
Executive Summary

About 25% of worldwide CO₂ emissions are attributed to transport. Although India has the lowest rate of energy consumption per tonne-km for goods transported by rail, growths in population, GDP and electrification plans by the Indian Railways, will raise the figure. 71% of electricity is generated using coal currently, and hence increasing electrification of the railways will also add to the emissions due to Railways. It is envisaged that 80% of rail freight and 60% of passenger traffic will run on electric energy by 2031-32. The Indian Railways have already considered the importance of increasing the share of low-carbon renewable energy sources such as solar and wind in the total energy mix. The internal target is installing 1,000 MW of solar power and 150 MW of wind power by 2020; the Railways are even considering a long-term target of 10,000 MW of renewable energy by 2030.

This study is in three phases. In the first, the feasibility of complete de-carbonization is examined and attractive pathways under different scenarios examined for achieving this goal. This will be done by, 1) Estimating passenger and freight demand upto 2030-31 and identifying the potential gap in passenger and freight demand-supply, 2) Conversion of passenger and freight demand into energy demand. The CO₂ emissions attributed to Indian Railways is also calculated.

This report estimates the growth in passenger and freight demand in 2030-31, in three scenarios of GDP growth: optimistic, realistic and pessimistic. A four-step calculation was used to estimate energy required for passenger and freight transport. This involved estimation of in-vehicle electricity consumption, electricity energy consumed for hauling and electrical energy consumed in the hauling of non-suburban and suburban passenger transport. Estimation of future electrical traction in rail passenger and freight transport also included expected use of electric traction in hauling non-suburban passenger and freight transport. Based on these calculations, the electricity requirement of the Indian Railways has been projected till 2030-31: the first step in implementing the de-carbonization process.