Domestic Reform and Global Integration: The Evolution of China’s Innovation System and Innovation Policies

Dr. Lan Xue, Professor and Dean
School of Public Policy and Management
Tsinghua University

Emerging Economy Perspectives and Priorities in the New Multi-Polar World, November 14-15, 2011, Beijing, China
Outline

This presentation tries to position the evolution of China’s innovation system in a historical and socio-economic context:

- **History**—China’s innovation system: A review of recent history;
- **Context**—Reform and Openness: China in transition;
- **Process**—Domestic reform and international integration: evolution of China’s innovation system in the reform era;
- **Policies**—China’s specific policy initiatives
- Implications
I. A review of recent history

- Despite China’s long history in inventive activities and the contribution it has made to the world, China lagged behind the West since Ming Dynasty (1368-1644);
- Not until mid-19th century (1847), China began to look to the West and send students to study abroad, many to the US.
China’s national innovation system--contemporary universities and research institutes

On Oct. 2, 1895, the then Emperor Guangxu approved the petition submitted by SHEN Xuanhuai, to establish the first contemporary Chinese university in Tianjin City: Beiyang University (the current Tianjin University).
By 1948, China had 210 universities with over 155,000 students, including graduate students:

Central Research Academy was established on June 9, 1928, with 70 research institutions in 1935. By 1949, only around 30 left, with a research staff of about 50,000.
China’s Innovation System:1949-1966

After the founding of the People’s Republic of China in 1949, China’s innovation system was restructured to change to a more centralized system based on the Russian model:

- Functional separation and mission orientation;
 - human resource development => universities;
 - basic research => Chinese Academy of Sciences;
 - applied research => ministerial/provincial research institutes;
 - development => in-house services in enterprises.
Achievement and setbacks

☐ Achievements:
 - By 1965, China had established over 1700 S&T institutions, with over 150,000 scientists and engineers;
 - Some of the major achievements include synthetic bovine insulin, atomic bomb, and oil field discovery in Daqing.

☐ Setbacks
 - The breakup with USSR in S&T cooperation in the late 1950s left a deep scar in the S&T community in China and made it realize that being self-reliant was essential in S&T development.
II. The Context: Reform and Openness in China since 1979

- Reform and Openness---The great social transformation in China since 1979:
 - Economic system:
 - Central planning => market-based;
 - Industrial structure:
 - Global manufacturing hub;
 - Society:
 - Rural => Urban; Closed => Open
 - Governance
 - Personal charisma and centralization of authority => rule of law and broad participation

©Lan Xue, 2011
Economic system: From Central Planning to market-based
Industrial structure: global manufacturing hub

- **Agriculture:**
 - 1980 = 30% => 2000 = 14.8% => 2007 = 11.3%

- **Manufacturing:**
 - 1980 = 49% => 2000 = 45.9% => 2007 = 48.6%

- **Service:**
 - 1980 = 21% => 2000 = 39.3% => 2007 = 40.1%
Society: rural and closed => urban and open

- Rural => Urban
 - Urban population 1982=20.6% => 46.6%=2009

- International Linkage
 - Economy: Self-reliant => major world trading partners
 - FDI > $60 billion
 - international trade as the percentage of GDP
 - 1978=10% => 2005 =62%
 - Chinese nationals going overseas:
 - 2000=10.47 million 2007=40.95 million
Governance structure

- Village election and township election experiments;
- Administrative and legal systems reforms;
- Broader public participation in the policy process:
 - e.g. public hearing; internet monitoring;
- The growth of NGOs and civil society;
- Anti-corruption campaigns;
-
III. Evolution of China’s Innovation System in the Reform Era

- The evolution of China’s innovation system has mirrored the great transformation of Chinese society in general. The major themes of the changes of China’s innovation system since 1979 are:
 - Reform—market-oriented reform based on incentive and institutional changes;
 - Integration—domestic institutions trying to integrate into the global system while maintaining their unique identities.

- Three waves of major changes:
 - Mid-1980s: domestic reform informed by global experience;
 - Late-1990s: domestic reform coupled with global integration;
 - 2006-: global integration enhanced by domestic reform.
3.1--The first wave of changes: mid-1980s-1990s

- **Policy orientation**
 - Creating Incentive regime for R&D organizations to serve for the economic development.
 - In 1985, the government began to push for a major reform aimed at changing the S&T system, specifically public research institutes:
 - Gradual funding cuts to all research institutes;
 - new R&D programs based on competition and peer review;
 - new approaches to the management of research organizations;
 - creation of platforms for technology transfer (science parks);
 - incentive for S&T personnel to “jump into the sea (becoming entrepreneurs)”;
 -
The outcome: Changing pattern of R&D spending

<table>
<thead>
<tr>
<th>Organization</th>
<th>1986 (%)</th>
<th>1997 (%)</th>
<th>2001 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>35.3</td>
<td>42.9</td>
<td>60.4</td>
</tr>
<tr>
<td>Research Institutes</td>
<td>60.7</td>
<td>42.9</td>
<td>27.7</td>
</tr>
<tr>
<td>Universities</td>
<td>4.0</td>
<td>12.1</td>
<td>9.8</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>
3.2--Second wave of changes: Late 1990s to mid-2000

- **Policy orientation**
 - to focus on institutional reforms by clarifying the institutional roles of different organizations in China’s national innovation system.

- **Public Research Institutes**
 - Knowledge Innovation Program by Chinese Academy of Sciences (CAS):
 - Major institutional support from the government to CAS to establish innovation centers (lean and mean, with high pay and high pressure);
 - Reforming Public Research Institutes: pushing them to the market
 - By the end of 2003, 1050 application-oriented research institutes were transformed into business since 1999 government reform.
 Universities

- Dramatic increase in college enrollment from 1999
 - The gross enrollment rate jumped from 12.5% in 2000 to 24.2% in 2009.
- Strengthening research universities—985 program

 Business

- Establishing R&D centers in major SOEs and supporting small business innovation
 - Small and Medium Enterprise Innovation Fund;
- Attracting MNCs to establish R&D centers in China
 - 750 MNC R&D centers were established in Beijing, Shanghai, Guangzhou, Chengdu, etc by mid-2005.
The outcome

- Greater role of Industrial R&D:
 - Industrial R&D:
 - 1997=42.9% => 2001=60.4% => 2007=72.3%

- Greater participation in the global science enterprise
 - Publications in SCI, SSCI indexed journals as a benchmark for universities and research institutes (see graph);

- Massive expansion of higher education:
 - Gross enrollment rate:
 - 1990=3.7%; 2001=10%; 2005=21%, 2009=24.2%
Research output by different countries measured by scientific papers indexed in Web of Science (1999-2008)
(US (not shown)=340,000; China=112,000)
3.3--The third wave of changes since mid-2000s

General Background

- The need for China to break away from the growth model relying on cheap resource and labor, and to focus more on innovation and sustainability;
- The need for China to break away from the traditional positions in the international division of labor; and to integrate with the global system on new models (see graphs);
An analysis of US-China ATP product trade found that:

- Over 90% of surplus is in processing trade;
- Over 90% of surplus is generated by MNCs and joint ventures.
The recent policy initiative

- Policy orientation
 - Changes in overall development strategy -- from GDP focused growth to coordinated development;
 - Changes from S&T policy to innovation policy

- The median and long range S&T plan in 2006
 - Guidelines for future S&T development:
 - promote indigenous innovation and work to make China an innovation-based country in 2020;
 - A group of priority areas of basic and applied research;
 - 16 mega research projects;
 -
An integrated innovation policy

- Policy scope=>beyond R&D programs
 - R&D investment, tax incentives, finance
 - Government procurement (abolished in 2011)
 - Human resources, IPR, research platforms
 - SME, Communication with the public…

- Policy coordination=>beyond MOST
 - Many other government agencies are involved;

- Policy implementation=>beyond S&T institutions
 - Business, academia, and other supporting organizations
3.4. Summary

- Domestic reform
 - National reform agenda provides initial impetus for reform in the innovation system;
 - The reform context has allowed for bold reforms in innovation system;

- Global integration:
 - Learning from the global system (science parks, knowledge economy and etc);
 - Participating in the global system (global science publications)
 - Integrating into the global system (two way exchanges)

- Virtuous cycle of reform and integration:
 - Reform=> conditions for better integration=> demand for more reform=>……
IV. Implications--Global Governance Challenges:

- Declining supply of public goods:
 - Shortage of national funding for basic research
 - Privatization of public knowledge

- Coordination problem:
 - Super-competition for public funding in “hot” fields;
 - Unhealthy competition on standards

- Knowledge divide
 - Basic education and higher education;
 - Lack of knowledge institutions for knowledge diffusion;

- Brain drain problems for developing countries
Global supply v.s. local demand in public knowledge

- Research agenda setting: whose agenda?
- Global publication system vs local dissemination (see graphs below)
 - Through what channels?

Inadequate IP regime:

- The distorted use of IP regime (TRIPS) to block innovation;
- The dominance of MNCs in licensing and standards (see case below)
MNCs dominance in standards setting

- About 50 global corporations determine what 250 ICT standard consortia do, and more importantly, how they do it.
- The top ten leaders: IBM, Microsoft, Fujitsu, Intel, Hewlett Packard, Hitachi, Sun Microsystems, Nokia, Ericsson and Texas Instruments.
- Of the 50 major players, 25 are from the US, 12 from the EU, 8 from Japan, 5 from emerging countries.
Governance reforms -- some initial ideas

- A reform on the global governance system for innovation?
 - A more balanced IP regime
 - Reform on TRIPs
 - Improved governance of standards
 - Regional higher education system and knowledge institutions for developing countries?
 - Creative ways of using existing knowledge?
 - Knowledge pool for green technology;
 - Accelerated diffusion of green technologies
 -

©Lan Xue, 2009
Thank you!