On the International Business Cycle Co-movement in East Asia Some evidence and thoughts for an Asian Monetary Union

1

Presented to Global Economic Cooperation: Views from G20 Countries

New Delhi, October 7-9, 2012

By

David Kim[§] School of Economics, University of Sydney

[§] Email: <u>kim.david@sydney.edu.au</u>.

N.B. My presentation is based on a joint research paper entitled "A FAVAR Analysis of the Business Cycle Co-movement in Asia: An Asian currency union may be closer than you think!" with HS Huh of Yonsei University and WJ Kim of Kangwon National University.

1. Background

- **According to the OCA literature (due to R. Mundell): facing similar shocks** important, among other criteria, is a pre-condition.
- What is the current status of business cycle synchronisation in East Asia? Any evidence of decoupling? How important is the regional cycle?
- **4**Gravity theory and evidence suggest high correlations between countries with geographic, income, cultural, and institutional proximities, not trade!
- **H**But, East Asia is so heterogeneous in terms of per capita income, geographic proximity, industrial structure, language (culture) and institutions.
 - i. High, Middle and Low income countries co-exist
 - ii. North East vs South East
 - iii. Greater China (mainland China, HK China and Taiwan)

2

HTrade and Financial integration in East Asia a key issue; policymakers stepping up discussion on financial integration, e.g. *Chiang Mai Initiative*.

3

- Given the Eurozone crisis, should a future Asian monetary union be completely ruled out?
- **4**Need theoretical and empirical research.
- **4**In theoretical research, dynamic stochastic general equilibrium (DSGE) model is the analytical framework (e.g. Smets and Wouters (2003, 2007))
- **4**In empirical research, correct modelling of unobservable (global, regional and country-specific) shocks is important: dynamic time series models with features such as Bayesian, unobserved components (state space), or non-linearity.

2. Our study

- **Utilises a factor-augmented vector autoregressive model (FA VAR) model, due to Stock and Watson (2005), to overcome shortcomings of standard VAR approach.**
- **Why?** Data rich environment. But shocks are unobservable.
- **4**Identify *global*, *regional* and *idiosyncratic* <u>real</u> and <u>nominal</u> shocks affecting ASEAN5 + greater China, Japan and Korea.
- **Estimate** how they respond to different shocks to infer the possibility of coordinated policy responses.
- **Comparable to Bagliano and Morana (2009) on Europe and US.**

3. Modelling approach

Dynamic Factor Model (DFM)

$$\begin{bmatrix} F_t \\ X_t \end{bmatrix} = \begin{bmatrix} \Phi(L) & 0 \\ \Lambda \Phi(L) & D(L) \end{bmatrix} \begin{bmatrix} F_{t-1} \\ X_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_t^F \\ \varepsilon_t^X \end{bmatrix}$$

Structural FAVAR

$$X_t = B^*(L)\xi_t + C^*(L)\psi_t$$

 ξ_t = structural regional or global factor shocks, and ψ_t country specific idiosyncratic shocks.

Identify and estimate the following shocks:

Oil, World Demand, Regional Demand, Regional Relative Price, Regional Nominal

4. Data and Results

- ASEAN5 (namely, Indonesia, Malaysia, Singapore, Thailand and the Philippines), greater China (i.e. China, Hong Kong and Taiwan), Japan and Korea.
- ↓ Quarterly data on real GDP, real exchange rate, CPI inflation, M1 growth, real exports and real imports for 1993:1 2010:4.
- GDP and the aggregate European GDP (i.e. world GDP proxy)

Block: GDP	PC_{l}	PC_2	PC3	PC_4	PC_5
JP_GDP	0.639202	0.076758	0.002656	0.000854	0.240773
TH_GDP	0.73070	0.074935	0.000302	0.013031	0.00006
MY_GDP	0.769439	0.021679	0.025443	0.039334	0.007489
TW_GDP	0.706397	0.047652	0.008169	0.025564	0.007517
SG_GDP	0.591767	0.10578	0.000004	0.177755	0.089998
KR_GDP	0.748703	0.033731	0.060674	0.001321	0.012853
PH_GDP	0.527529	0.000044	0.442781	0.000053	0.005151
	0.607376	0.2728	0.00725	0.000764	0.000207
HK_GDP	0.767334	0.018104	0.012119	0.003024	0.010522
CN_GDP	0.59147	0.038676	0.004071	0.251382	0.025184

Table 1: Principal components analysis: fraction of the variance explained

Table 1: Continued.

Block: DMO					
JP_DMO	0.097539	0.887852	0.00696	0.002845	0.00156
TH_DMO	0.905732	0.000154	0.028544	0.012245	0.010402
MY_DMO	0.948408	0.002749	0.000095	0.002763	0.005402
TW_DMO	0.623588	0.009037	0.338612	0.007582	0.002854
SG_DMO	0.838737	0.007369	0.00922	0.011465	0.04765
KR_DMO	0.723073	0.013675	0.000857	0.233079	0.008434
PH_DMO	0.826841	0.016163	0.066612	0.04106	0.003337
IN_DMO	0.783922	0.019941	0.013832	0.000302	0.160077
HK_DMO	0.930977	0.002686	0.000274	0.001459	0.002981
CN_DMO	0.879433	0.003762	0.00063	0.02	0.001618

GDP GROWTH

Figure 2: Dispersion of Common/idiosyncratic Components

Figure 3.1: All Common Components - GDP

Figure 4.1: Impulse Responses to Oil Shock

(b)

Figure 4.2: Impulse Responses to the world demand shock

(c)

___JP

TH

MY

TW

SG

KR

PH

IN

HK

CN

Figure 4.3: Impulse Responses to the regional output shock

(d) Responses of IMT to Regional Output Shock

Figure 4.4: Impulse Responses to the nominal and real exchange rate shocks

Figure 4.5: Impulse Responses to Idiosyncratic shocks

17

Forecast error variance decomposition

	Oil	WRD	RGDP	REX	NOM	IDO
JP_GDP	7.32	41.22	38.70	4.92	7.12	0.72
TH GDP	2.31	36.14	51.73	1.66	5.48	2.69
MY_GDP	7.66	43.87	32.57	3.43	11.12	1.34
TW GDP	8.18	48.27	35.38	2.72	4.36	1.09
SG GDP	4.27	54.32	37.68	0.79	2.25	0.69
KR_GDP	9.13	41.36	29.67	3.24	12.85	3.76
PH_GDP	7.40	30.90	42.20	10.93	6.75	1.83
IN_GDP	0.65	7.33	44.28	40.67	4.04	3.03
HK_GDP	12.04	52.39	15.37	1.25	16.44	2.51
CN_GDP	0.97	26.04	62.56	2.73	6.08	1.63
JP_REX	11.17	0.58	16.61	67.07	2.02	2.56
TH_REX	0.54	36.20	10.00	38.23	9.73	5.29
MY_REX	1.79	23.20	37.01	34.37	1.11	2.52
TW_REX	15.01	24.75	2.11	55.51	1.50	1.12
SG_REX	4.11	20.24	24.55	41.59	6.79	2.72
KR_REX	6.98	36.68	13.39	28.56	5.93	8.47
PH_REX	1.40	25.30	29.29	32.69	4.02	7.30
IN_REX	1.95	19.03	8.30	60.51	3.96	6.25
HK_REX	13.54	12.48	31.72	3.71	3.06	35.49
CN_REX	0.26	25.89	28.96	19.08	6.13	19.67
JP_INF	2.69	42.19	46.31	2.67	3.15	2.99
TH_INF	25.67	6.15	27.09	13.62	23.36	4.10
MY_INF	33.58	18.83	13.71	1.85	30.38	1.65
TW_INF	15.62	19.33	7.83	9.81	38.23	9.18
SG_INF	5.27	54.45	27.43	3.77	7.44	1.64
KR_INF	19.39	4.45	31.24	10.15	27.38	7.40
PH_INF	20.73	17.18	19.01	4.11	37.49	1.47
IN_INF	13.81	3.96	13.73	4.06	63.21	1.22
HK_INF	20.47	7.72	28.45	3.03	37.54	2.80
CN_INF	10.66	22.89	27.82	4.47	18.57	15.60

Table 2.4: Variance decomposition at lag 8

5. Conclusion

- **4**Regional and global factors explain the bulk of fluctuations in East Asia
- **4**Except for two or three outliers, more synchronised than Europe prior to 1990 (e.g. Bayoumi and Eichengreen (1991))
- **4**But, synchronised macroeconomic responses are <u>only one (very crude)</u> of the pre-conditions. See Europe! Note Shocks can differ *ex post* from *ex ante*.
- **4**Fiscal policy put aside, very limited labour mobility is another obstacle.
- **4**Possibly two or more monetary zones to start with, based on geographical and economic proximities. (Alan Meltzer's proposal for the troubled EMU)
- **HEP** cannot be separated from MP! More so in times of crisis!
- **4**Integration should occur sequentially and gradually. Getting the order of integration right is important.