Risk Management at Indian Exchanges

Going Beyond SPAN and VaR

Where do we stand today?

- Risk systems in exchange traded derivatives (ETD) were designed from a clean slate in 1990s.
- Drew on then global best practices for example, Risk Metrics and SPAN.
- Many incremental improvements were made subsequently.
- But core foundations are a decade old.

What is the state of the art?

- Academic risk measurement models today emphasize:
 - Expected shortfall and other coherent risk measures and not Value at Risk
 - Fat tailed distributions and not multivariate normal
 - Non linear dependence (copulas) and not correlations

Scaling Up

- Risk Metrics and SPAN are highly scalable and proven models.
- Can new models scale up?
 - Moore's law over last 15 years enables thousand fold increase in computations
 - But curse of dimensionality must be addressed: computational complexity must be linear in number of portfolios, positions and underlyings: O(n)

L C Gupta Report: Value at Risk

"The concept of "value at risk" should be used in calculating required levels of initial margin. The initial margin should be large enough to cover the one-day loss that can be encountered on the position on 99% of the days."

L. C. Gupta Committee, 1998 Paragraph 16.3(3)

99% VaR is the worst of the **best** 99% outcomes or the **best** of the 1% worst outcomes.

Value at Risk (VaR)

- Why best of the worst and not average, worst or most likely of the worst?
 - Worst outcome is -∞ for any unbounded distribution.
 - VaR is mode of the worst outcomes unless hump in tail.
 - For normal distribution, average of the worst is
 n(VaR)/𝒯(VaR) and is asymptotically the
 same as VaR because

 $1 - \mathcal{N}(y) \sim n(y)/y$ as y tends to ∞

Expected Shortfall

- For non normal distributions, VaR is not average of worst 1% outcomes. The average is a different risk measure Expected Shortfall (ES).
- ES does not imply risk neutrality. Far enough in the tail, cost of over and under margining are comparable and the mean is solution of a quadratic loss problem.

Coherent Risk Measures

Four axioms for coherent risk measures:

Translation invariance: Adding an initial sure amount to the portfolio reduces risk by the same amount.

Sub additivity: "Merger does not create extra risk"

Positive Homogeneity: Doubling all positions doubles the risk.

Monotonicity: Risk is not increased by adding position which has no probability of loss.

Artzner et al (1999), "Coherent Measures of Risk", Mathematical Finance, 9(3), 203-228

© Prof. Jayanth R. Varma, Indian Institute of Management, Ahmedabad

Examples of Coherent Measures

- **ES** is a coherent risk measure.
- The maximum of the expected loss under a set of probability measures or generalized scenarios is a coherent risk measure. (Converse is also true). SPAN is coherent.
- ▼VaR is not coherent because it is not subadditive.

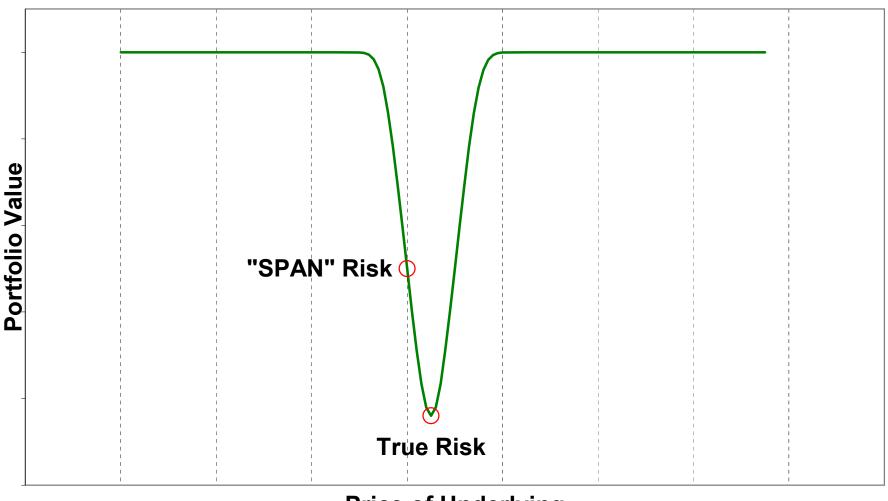
Axiom of Relevance

Artzner et al also proposed:

Axiom of Relevance: Position that can never make a profit but can make a loss has positive risk.

Wide Range of scenarios: Convex hull of generalized scenarios should contain physical and risk neutral probability measures.

In my opinion, SPAN does not satisfy this because of too few scenarios.



Price of Underlying

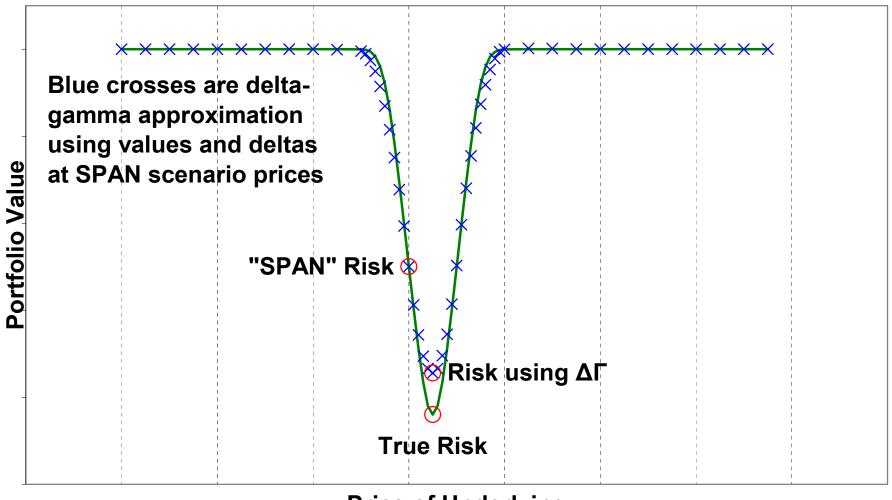
Too Few Scenarios in SPAN

If price scanning range is set at $\pm 3\sigma$, then there are no scenarios between 0 and σ which covers a probability of 34%.

Possible Solutions:

- Increase number of scenarios (say at each percentile)
- Use a delta-gamma approximation
- Probably, we should do both.

Improved Estimate of the Risk of a Short Butterfly Dotted lines are SPAN price scenarios



Price of Underlying

From VaR to SPAN to ES

- SPAN is not portfolio VaR, it is more like sum of VaRs eg deep OTM call and put. It is a move towards ES.
- Delta-Gamma approximation can be used to compute ES by analytically integrating the polynomial over several sub intervals.
- In the tails, ES can be approximated using tail index: h/(h-1) times VaR. Use notional value or delta for aggregation. Indian ETD does this.
- All this entails only O(n) complexity.

Tail Index

- Normal distribution has exponentially declining tails.
- Fat tails follow power law ~ x-h
- Quasi Maximum Likelihood (QML):
 - Use least squares GARCH estimates
 - Estimate tail index from residuals
 - Consistent estimator + large sample size
- Risk Metrics is a GARCH variant

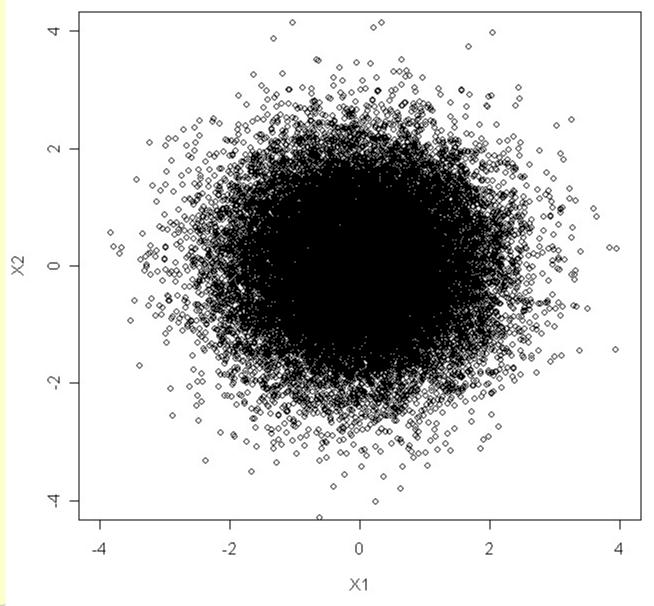
Multiple Underlyings

- SPAN simply aggregates across underlyings. No diversification benefit except ad hoc offsets (inter commodity spreads)
- RiskMetrics uses correlations and multivariate normality.
 - Correlation often unstable
 - Low correlation under-margins long only portfolios
 - High correlation under-margins long-short portfolios
- Copulas are the way to go.

What do copulas achieve?

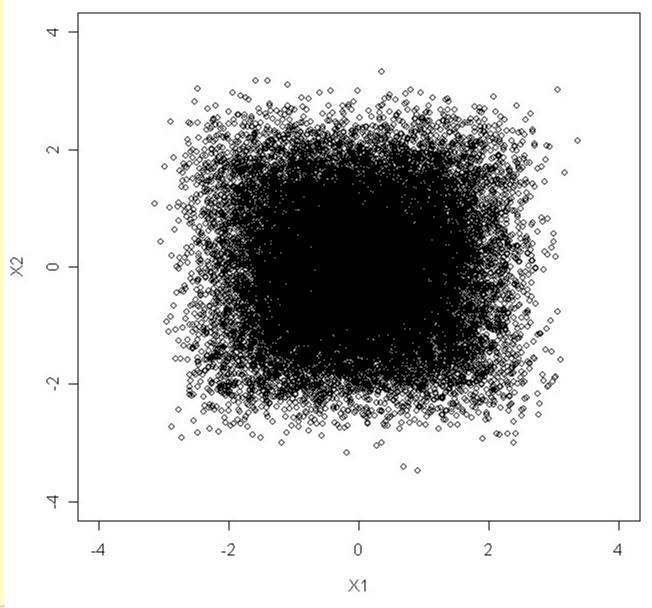
- Extreme price movements are more correlated than usual (for example, crash of 1987, dot com bubble of 1999).
- Can be modeled as time varying correlations.
- Better modeled as non linear tail dependence.

Scatter plot of two gaussian variates with gaussian copula



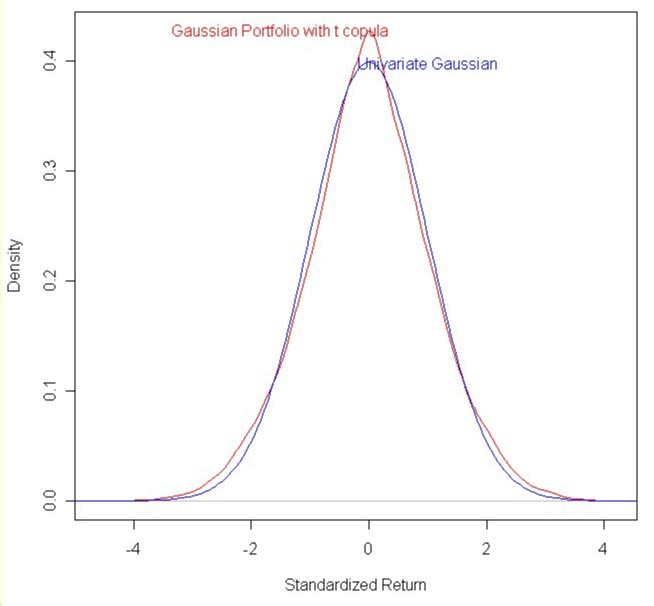
© Prof. Jayanth K. Varma, Indian Institute of Management, Ahmedabad

Scatter plot of two gaussian variates with t-copula



© Prof. Jayanth K. Varma, Indian Institute of Management, Ahmedabad

Equal weight portfolio of two uncorrelated guassian securities



© Prof. Jayanth K. Varma, Indian Institute of Management, Ahmedabad

Equal weight portfolio of two uncorrelated t securities Univariate t Bivariate t Portfolio Density 0.2 0.1 0.0 -2 0

© Prof. Jayanth K. Varma, Indian Institute of Management, Ahmedabad

Standardized Return

Choice of copulas

- Multivariate normality solves curse of dimensionality as portfolio distribution is univariate normal.
- Unidimensional mixture of multivariate normals is attractive as it reduces to numerical integral in one dimension.
- Multivariate t (t copula with t marginals) is inverse gamma mixture of multivariate normals.
- Other mixtures possible. Again the complexity is only O(n) unlike general copulas.

Fitting marginal distributions

- To use copulas, we must fit a marginal distribution to the portfolio losses for each underlying and apply copula to these marginals.
- SPAN with enough scenarios approximates the distribution.
- Fit distribution to match the tails well. Match tail quantiles in addition to matching moments.

Directions for Research

- Statistical estimation and goodness of fit.
- Refinement of algorithms accuracy and efficiency.
- Computational software (open source?)
- Advocacy.

Another direction – game theory

- If arbitrage is leverage constrained, then arbitrageurs seek undermargined portfolios.
- Two stage game:
 - Exchange moves first sets margin rules
 - Arbitrageur moves second chooses portfolios
- Can we solve the game (within O(n) complexity) to set optimal margins?

Game against nature

Systemic risk:

- Exchange is short options on each trader's portfolio with strike equal to portfolio margin.
- What price scenarios create worst loss to exchange (aggregated across all traders)?
- Add these scenarios to margining system dynamically

Three stage game:

- Traders choose portfolios
- Exchange decides on "special" margins or "special" margining scenarios
- Nature (market?) reveals new prices
- Can we solve this game within O(n) complexity?