Towards A Sustainable Energy Strategy for India

Montek Singh Ahluwalia Himanshu Gupta Nicholas Stern

ICRIER

Overview

- We examine India's energy trajectory for 2012-47 based on IESS-2047,
 Version-2 of NITI Aayog, focusing on
 - Degree of import dependence
 - CO2 emissions
- Projections: Business as Usual (BAU) and Low Carbon Alternative (LCA).
- The BAU is clearly not acceptable. LCA is much better both for import dependence and carbon emissions.
- We explore the policy implications of transiting to the LCA path.
- We also look at international aspects and compare China.

Sectors

Demand	Supply
Transport(Passenger and Freight)	Fossil Fuel Production(Coal, Oil and Gas)
Buildings(Residential and Commercial)	Fossil Fuel Electricity(Coal, Oil and Gas and CCS)
Industry	Solar Energy (PV, CSP and Water Heaters)
Agriculture	Wind Energy (Onshore + Offshore)
Telecom	Hydro and Nuclear Energy
Cooking	Bio Energy(2 nd Generation, and Advanced Biofuels)
	T&D losses and Storage
	Hydrogen and Cross Border Electricity Trade

Levels of Effort

Level 1

Least Effort

• Offers projections assuming pessimistic or almost no improvements in energy efficiency levels in the demand sector and/or deployment of supply-side technologies.

Level 2

Determined Effort

• Effort which is deemed most achievable by the implementation of current policies and programmes of the government

Level 3

Aggressive Effort

• Describes the level of effort needing significant change which is hard but deliverable.

Level 4

Heroic Effort

• Indicates heightened efficiency numbers, leading up to the physically best attainable in due course.

Projections for basic economic indicators: 2047

Business as Usual (BAU) Assumptions

- BAU assumptions imply extrapolation of past trends of effort in development, deployment and outcomes of current policy measures.
- Experts feel current efforts are sub-optimal in some sectors such as Transport, hence Level 1.
- Efforts are assumed to be just optimal in other sectors such as Industry and Renewables, hence Level 2.

Low Carbon Pathway Assumptions

- Four ingredients of Low Carbon Pathway:
 - a) Minimize resource consumption in the demand sectors
 - b) Minimize energy consumption required to produce and consume resources.
 - c) Supplying the energy required through electricity rather than primary fuels.
 - d) Increasing renewables in the electricity mix
- Level 4 of demand sectors, Level 1 of coal based capacity, Level 3 of Solar and Wind and Level-4 of Bio Energy to make the above possible.
- 17 user choices in the 8 demand sectors in the IESS-V2 to realize components a,b,c of the low carbon pathway.

Key Results - Import Dependence

	2012	2	047
	Base Year	Business as Usual	Low Carbon Scenario
Import Dependence			
(%)			
Coal	18	57	19
Oil	77	90	60
Gas	22	43	21
All Energy	31	59	22

Energy-Emission-GDP equation

$$\left(\frac{EM}{GDP}\right) = \left(\frac{E}{GDP}\right) \times \left(\frac{EM}{E}\right)$$

$$Cleaner$$

$$Energy$$

Key Results-Emissions

	2012	2047	
	Base Year	Business as Usual	Low Carbon Scenario
Energy Intensity of GDP (kgoe/\$)	0.24	0 .08	0.05
Emissions Intensity of GDP (Tonnes CO 2/1000\$)	1.2	0.47	0.26
Total Emissions (MT CO2)	2069	10,027	5618
Emissions Per capita (Tonnes CO 2 per person)	1.7	5.9	3.3

Decomposition of Emissions Reduction From BAU to Low Carbon in 2047

Energy Efficiency	Reduction from 10002 MtCO2 in BAU
Residential Buildings	622
Commercial Buildings	161
Passenger Transport	472
Freight Transport	231
Industry	2128
Agriculture	141
Telecom& Cooking	41
Cleaner Energy	6231 MT
Introducing efficiency in coal thermal generation	56
Reducing T&D losses	112
Deployment of Bio Energy	169
Deployment of Solar PV -Utility and Distributed	275
Emissions in LCA	5618 MT

Emissions Pathways

Coal Consumption Pathways

Emissions-Historical Perspective

Source: World Bank

Emissions-Future Perspective

Source: Green, Stern(2015) & Authors' calculations