Auction Theory: Some Basics

Arunava Sen

Indian Statistical Institute, New Delhi

ICRIER Conference on Telecom, March 7, 2014

- Single Good Problem
- First Price Auction

- Single Good Problem
- First Price Auction
- Second Price Auction

- Single Good Problem
- First Price Auction
- Second Price Auction
- Revenue

- Single Good Problem
- First Price Auction
- Second Price Auction
- Revenue
- Reserve prices

- Single Good Problem
- First Price Auction
- Second Price Auction
- Revenue
- Reserve prices
- Optimal Auction Design

- Single Good Problem
- First Price Auction
- Second Price Auction
- Revenue
- Reserve prices
- Optimal Auction Design
- Dynamic auctions

- Single Good Problem
- First Price Auction
- Second Price Auction
- Revenue
- Reserve prices
- Optimal Auction Design
- Dynamic auctions
- Combinatorial auctions

■ Single good for sale: n buyers, $n \ge 1$.

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.
- Valuation of buyer i known only to i not to other buyers and not to the seller.

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.
- Valuation of buyer i known only to i not to other buyers and not to the seller.
- If valuations are known to the seller, the solution is trivial.

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.
- Valuation of buyer i known only to i not to other buyers and not to the seller.
- If valuations are known to the seller, the solution is trivial.
- Since valuations are private information, buyers must reveal them via bidding.

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.
- Valuation of buyer i known only to i not to other buyers and not to the seller.
- If valuations are known to the seller, the solution is trivial.
- Since valuations are private information, buyers must reveal them via bidding.
- Seller has some information/beliefs about buyer valuations
 - knows their "distribution".

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.
- Valuation of buyer i known only to i not to other buyers and not to the seller.
- If valuations are known to the seller, the solution is trivial.
- Since valuations are private information, buyers must reveal them via bidding.
- Seller has some information/beliefs about buyer valuations
 knows their "distribution".
- Formally: buyer i's valuation v_i is a random variable whose realization is observed by i. Seller however knows its distribution F_i.

- Single good for sale: n buyers, $n \ge 1$.
- Buyer's valuation: PRIVATE INFORMATION.
- Valuation of buyer i known only to i not to other buyers and not to the seller.
- If valuations are known to the seller, the solution is trivial.
- Since valuations are private information, buyers must reveal them via bidding.
- Seller has some information/beliefs about buyer valuations
 knows their "distribution".
- Formally: buyer i's valuation v_i is a random variable whose realization is observed by i. Seller however knows its distribution F_i.
- Example: uniform distribution (equal chance) in some range.

All buyers submit bids. Good given to highest bidder at the price she bids.

- All buyers submit bids. Good given to highest bidder at the price she bids.
- Bidders are playing a game of incomplete information. They will bid below their valuation.

- All buyers submit bids. Good given to highest bidder at the price she bids.
- Bidders are playing a game of incomplete information. They will bid below their valuation.
- Bayes-Nash equilibrium: $b_i = \frac{n-1}{n}v_i$. (Assumption: valuations are independently drawn and distributed uniformly over the same interval).

All buyers submit bids. Good given to highest bidder at the second-highest price, i.e at the highest bid after the winning bid has been removed.

- All buyers submit bids. Good given to highest bidder at the second-highest price, i.e at the highest bid after the winning bid has been removed.
- Equilibrium: All bidders bid truthfully irrespective of their beliefs regarding the bids of others. No assumption about the distribution of bids required. Formally: Bidding your true valuation is a weakly dominant strategy.

- All buyers submit bids. Good given to highest bidder at the second-highest price, i.e at the highest bid after the winning bid has been removed.
- Equilibrium: All bidders bid truthfully irrespective of their beliefs regarding the bids of others. No assumption about the distribution of bids required. Formally: Bidding your true valuation is a weakly dominant strategy.
- Suppose bidder's valuation is 100. Believes that the second-highest bid will be below 100, say 80. Bidding truthfully gives a surplus of 20. Any bid above 80 will give the game surplus while bidding below 80 will give zero. Similar argument if she believes that the second-highest bid will be above 100.

Suppose the seller wants to raise as much revenue as possible. Which does better - the first-price or the second-price auction?

- Suppose the seller wants to raise as much revenue as possible. Which does better - the first-price or the second-price auction?
- IMPORTANT: Revenue is a random variable valuations are uncertain.

- Suppose the seller wants to raise as much revenue as possible. Which does better - the first-price or the second-price auction?
- IMPORTANT: Revenue is a random variable valuations are uncertain.
- Suppose there are two bidders.

- Suppose the seller wants to raise as much revenue as possible. Which does better - the first-price or the second-price auction?
- IMPORTANT: Revenue is a random variable valuations are uncertain.
- Suppose there are two bidders.
- Suppose the valuation of the bidders are 80 and 50. FP auction: bidders bid 40 and 25 revenue is 40. SP auction: bidders bid 80 and 50; higher bidder wins and pays 50. SP better.

- Suppose the seller wants to raise as much revenue as possible. Which does better - the first-price or the second-price auction?
- IMPORTANT: Revenue is a random variable valuations are uncertain.
- Suppose there are two bidders.
- Suppose the valuation of the bidders are 80 and 50. FP auction: bidders bid 40 and 25 revenue is 40. SP auction: bidders bid 80 and 50; higher bidder wins and pays 50. SP better.
- Suppose the valuation of the bidders are 80 and 30. FP auction: bidders bid 40 and 15 revenue is 40. SP auction: bidders bid 80 and 30; higher bidder wins and pays 30. FP better.

- Suppose the seller wants to raise as much revenue as possible. Which does better - the first-price or the second-price auction?
- IMPORTANT: Revenue is a random variable valuations are uncertain.
- Suppose there are two bidders.
- Suppose the valuation of the bidders are 80 and 50. FP auction: bidders bid 40 and 25 revenue is 40. SP auction: bidders bid 80 and 50; higher bidder wins and pays 50. SP better.
- Suppose the valuation of the bidders are 80 and 30. FP auction: bidders bid 40 and 15 revenue is 40. SP auction: bidders bid 80 and 30; higher bidder wins and pays 30. FP better.
- On average (i.e. in expectation)?

Revenue Equivalence

Revenue Equivalence

Exactly the same!

Revenue Equivalence

- Exactly the same!
- Holds very generally the Revenue Equivalence Theorem.

Revenue Equivalence

- Exactly the same!
- Holds very generally the Revenue Equivalence Theorem.
- RE Theorem: Two auctions that generate the same outcomes in equilibrium and where losers don't pay generate the same expected revenue.

Revenue Equivalence

- Exactly the same!
- Holds very generally the Revenue Equivalence Theorem.
- RE Theorem: Two auctions that generate the same outcomes in equilibrium and where losers don't pay generate the same expected revenue.
- FP and SP auctions lead to the same outcome in equilibrium the highest valuation bidder gets the outcome (Pareto efficiency) and losers don't pay. Hence RE applies.

Is there a way to increase expected revenue beyond that of the FP and SP auctions?

- Is there a way to increase expected revenue beyond that of the FP and SP auctions?
- Yes by introducing reserve prices.

- Is there a way to increase expected revenue beyond that of the FP and SP auctions?
- Yes by introducing reserve prices.
- Apparent paradox because a reserve prices may lead to the good not being sold (clear inefficiency). However, it may increase the price when the good is sold (for instance in a SP auction when it is the second-highest bid).

- Is there a way to increase expected revenue beyond that of the FP and SP auctions?
- Yes by introducing reserve prices.
- Apparent paradox because a reserve prices may lead to the good not being sold (clear inefficiency). However, it may increase the price when the good is sold (for instance in a SP auction when it is the second-highest bid).
- Trade-off between efficiency and revenue-maximization.

- Is there a way to increase expected revenue beyond that of the FP and SP auctions?
- Yes by introducing reserve prices.
- Apparent paradox because a reserve prices may lead to the good not being sold (clear inefficiency). However, it may increase the price when the good is sold (for instance in a SP auction when it is the second-highest bid).
- Trade-off between efficiency and revenue-maximization.
- Another important practical consideration for reserve prices: preventing collusion.

■ What is the revenue-maximizing auction?

- What is the revenue-maximizing auction?
- Appears very difficult how does one represent all auctions, including dynamic auctions?

- What is the revenue-maximizing auction?
- Appears very difficult how does one represent all auctions, including dynamic auctions?
- Idea: all auctions can be represented in "sealed-bid form", i.e. an auction is a map from bids to allocations and from bids to payments for all bidders. Moreover incentive-compatibility constraints must hold no bidder should be able to profit by misrepresentation. (Revelation Principle)

- What is the revenue-maximizing auction?
- Appears very difficult how does one represent all auctions, including dynamic auctions?
- Idea: all auctions can be represented in "sealed-bid form", i.e. an auction is a map from bids to allocations and from bids to payments for all bidders. Moreover incentive-compatibility constraints must hold - no bidder should be able to profit by misrepresentation. (Revelation Principle)
- There are an uncountable infinity of auctions to consider. Incentive-compatibility imposes an uncountable infinity of constraints. Hard mathematical problem.

- What is the revenue-maximizing auction?
- Appears very difficult how does one represent all auctions, including dynamic auctions?
- Idea: all auctions can be represented in "sealed-bid form", i.e. an auction is a map from bids to allocations and from bids to payments for all bidders. Moreover incentive-compatibility constraints must hold - no bidder should be able to profit by misrepresentation. (Revelation Principle)
- There are an uncountable infinity of auctions to consider. Incentive-compatibility imposes an uncountable infinity of constraints. Hard mathematical problem.
- Myerson (1981) (Nobel Prize 2007) solves the problem!

Very general solution: A "virtual valuation" is constructed for every bidder by adjusting their bid with a parameter that depends on the distribution of her valuation.

- Very general solution: A "virtual valuation" is constructed for every bidder by adjusting their bid with a parameter that depends on the distribution of her valuation.
- Good given to the bidder with the highest virtual valuation provided this is greater than zero.

- Very general solution: A "virtual valuation" is constructed for every bidder by adjusting their bid with a parameter that depends on the distribution of her valuation.
- Good given to the bidder with the highest virtual valuation provided this is greater than zero.
- In case the highest virtual valuation is less than zero, good stays with the seller.

- Very general solution: A "virtual valuation" is constructed for every bidder by adjusting their bid with a parameter that depends on the distribution of her valuation.
- Good given to the bidder with the highest virtual valuation provided this is greater than zero.
- In case the highest virtual valuation is less than zero, good stays with the seller.
- If bidders are symmetric, we have a second-price auction with a reserve price.

■ The two most-familiar auctions are the English auction (prices increase) and the Dutch-auction (prices decrease).

- The two most-familiar auctions are the English auction (prices increase) and the Dutch-auction (prices decrease).
- The Dutch auction is "strategically equivalent" to a FP auction and the English auction to a SP auction.

- The two most-familiar auctions are the English auction (prices increase) and the Dutch-auction (prices decrease).
- The Dutch auction is "strategically equivalent" to a FP auction and the English auction to a SP auction.
- One can therefore think of an English auction as a way to "implement" a SP or Myerson-type auction. Start at the reserve price and raise prices until all bidders except one drop out.

- The two most-familiar auctions are the English auction (prices increase) and the Dutch-auction (prices decrease).
- The Dutch auction is "strategically equivalent" to a FP auction and the English auction to a SP auction.
- One can therefore think of an English auction as a way to "implement" a SP or Myerson-type auction. Start at the reserve price and raise prices until all bidders except one drop out.
- Dynamic auctions are popular in practice transparent, practical difficulties in collusion.

 Multiple-goods such as the spectrum, airport landing slots etc.

- Multiple-goods such as the spectrum, airport landing slots etc.
- A bidder's valuation is now multi-dimensional. For example, if there are m goods, a typical valuation consists of 2^m numbers, one for each possible package of the m-goods.

- Multiple-goods such as the spectrum, airport landing slots etc.
- A bidder's valuation is now multi-dimensional. For example, if there are m goods, a typical valuation consists of 2^m numbers, one for each possible package of the m-goods.
- Critical issue: the value of getting object A and B together is NOT the sum of the values of getting ojects A and B separately. Synergies, externalities etc.

- Multiple-goods such as the spectrum, airport landing slots etc.
- A bidder's valuation is now multi-dimensional. For example, if there are m goods, a typical valuation consists of 2^m numbers, one for each possible package of the m-goods.
- Critical issue: the value of getting object A and B together is NOT the sum of the values of getting ojects A and B separately. Synergies, externalities etc.
- What is the revenue-optimal combinatorial auction?

- Multiple-goods such as the spectrum, airport landing slots etc.
- A bidder's valuation is now multi-dimensional. For example, if there are m goods, a typical valuation consists of 2^m numbers, one for each possible package of the m-goods.
- Critical issue: the value of getting object A and B together is NOT the sum of the values of getting ojects A and B separately. Synergies, externalities etc.
- What is the revenue-optimal combinatorial auction?
- Not known (even for two objects)!

- Multiple-goods such as the spectrum, airport landing slots etc.
- A bidder's valuation is now multi-dimensional. For example, if there are m goods, a typical valuation consists of 2^m numbers, one for each possible package of the m-goods.
- Critical issue: the value of getting object A and B together is NOT the sum of the values of getting ojects A and B separately. Synergies, externalities etc.
- What is the revenue-optimal combinatorial auction?
- Not known (even for two objects)!
- Selling each good independently may not serve the interests of either efficiency or revenue. Will typically induce complicated strategic behaviour.

Can efficiency be achieved?

- Can efficiency be achieved?
- Yes by a sealed-bid auction which is a suitable generalization of the SP auction. The VCG auction. Not revenue optimal.

- Can efficiency be achieved?
- Yes by a sealed-bid auction which is a suitable generalization of the SP auction. The VCG auction. Not revenue optimal.
- What is the English auction (dynamic auction) counterpart of the single-good case? Not obvious - active area of research.